Lower Paleolithic hominin ecology at the fringe of the desert: Faunal remains from Bizat Ruhama and Nahal Hesi, Northern Negev, Israel

Reuven Yeshurun a,*, Yossi Zaidner a, Véra Eisenmann b, Bienvenido Martínez-Navarro c, Guy Bar-Oz a

Zinman Institute of Archaeology, University of Haifa, Mount Carmel, 31905 Haifa, Israel
bUMR 5143 du CNRS, CP 38, Département Histoire de la Terre, 8 rue Buffon, 75005 Paris, France
cICREA, Institut Català de Paleoeccologia Humana i Evolució Social–IPHES, Universitat Rovira i Virgili Pl. Imperial Tarraco 1, 43005 Tarragona, Spain

Article history:
Received 26 August 2009
Accepted 16 January 2010

Keywords:
Lower Paleolithic
Early-Middle Pleistocene
Taphonomy
Zooarchaeology
Levant
Negev
Paleoecology

Abstract

The Southern Levant is a pivotal area for the study of hominin paleoecology during the Lower Paleolithic, because of its location on the out-of-Africa dispersal route and its significant ecological diversity. Important information has been gained by archaeofaunal studies, which usually reveal that exploitation of diverse Mediterranean environments with woodlands, marshes and lake margins, represents a dominant subsistence strategy for Lower Paleolithic hominins. Here, we present new taxonomic and taphonomic data from two sites in the southern coastal plain of the Southern Levant, at the fringe of the Negev Desert: Bizat Ruhama (Early Pleistocene) and Nahal Hesi (Middle Pleistocene). The sites preserve anthropogenic faunas, with the former signaling a marrow-exploitation strategy, perhaps related to scavenging from carnivore kills, and the latter showing evidence for primary access to fleshed ungulate carcasses. The species composition of these Northern Negev sites is unique for the Levantine Lower Paleolithic in that these sites lack typical woodland and riparian species, probably indicating an open, relatively uniform environment with patchy water sources and trees, much like this semiarid region today. Bizat Ruhama and Nahal Hesi are among the only Levantine Lower Paleolithic faunas associated with such a setting, thereby widening the known spectrum of environments exploited by hominins in the region. It is suggested that the two sites, coupled with the nearby Late Pleistocene evidence, reflect a largely stable semiarid environment on the northwestern fringe of the Negev Desert throughout much of the Pleistocene.

Introduction

Studies of hominin interactions with their environments in the Lower Paleolithic are essential for understanding the ways of life and adaptations of pre-modern humans. Sites in the Mediterranean southern Levant, on the main route of dispersals from Africa (e.g., Tchernov, 1988; Bar-Yosef, 1998; Klein, 1999; Goren-Inbar et al., 2000; Bar-Yosef and Belfer-Cohen, 2001; Dennell, 2003; Belmaker, 2009), have been studied through a variety of approaches, with archaeofaunal studies greatly contributing to the understanding of paleoenvironments, biochronology and hominin paleoecology and subsistence. Archaeofaunal studies often reconstruct a mosaic environment of open grasslands, woodlands, and freshwater lakes or marshes. Many of the reconstructed site-settings contained rich and diverse faunal communities, including mammals from both African (Ethiopic) and Eurasian (Palaearctic and Indian) origins, with browsing, grazing and amphibious animals. Hominin activities during the Levantine Lower Paleolithic were therefore associated with diverse Mediterranean ecological zones and frequently linked to lake-margin habitations (e.g., Bate, 1937; Haas, 1966; Tchernov, 1986; Tchernov et al., 1994; Horovitz, 1996; Goren-Inbar et al., 2000; Feibel, 2004; Martinez-Navarro, 2004; Belmaker, 2006; Monchot and Horwitz, 2007a).

The place of Levantine hominins in the “food chain” of Lower Paleolithic fauna (cf., Blumenschine, 1986, 1995) has been studied at a few sites using taphonomic methods, and interpretations have ranged from weak or ambiguous evidence for hominin hunting (e.g., Tchernov et al., 1994; Belmaker, 2006; Monchot and Horwitz, 2007b) to systematic butchery of medium and large mammals, perhaps indicating modern hunting behavior or nearly so (e.g., Goren-Inbar et al., 1994; Gaudzinski, 2004a, b; Chazan and Horwitz, 2006; Rabinovich et al., 2008; Stiner et al., 2009). Some Lower Paleolithic faunas in the Levant do not show clear anthropogenic...
signals and many are badly preserved, stressing the need for more data from diverse ecological settings in order to obtain meaningful temporal and regional reconstructions of hominin paleoecology and subsistence.

Most evidence concerning hominin exploitation of the environment during the Lower Paleolithic of the Levant has been derived from sites in northern and central Israel. These localities reside in the present-day Mediterranean climatic zone, exhibiting diverse faunas (and in the case of Gesher Benot Ya`aqov – also flora) mostly indicative of a mosaic of Mediterranean environments. Here we present the first detailed faunal analyses of two nearby sites in the southern coastal plain of the Levant, on the northern fringe of the Negev desert, in the present semiarid zone of Israel: Bizat Ruhama (Early Pleistocene) and Nahal Hesi (Middle Pleistocene).

We utilize zooarchaeological and taphonomic analyses to shed light on hominin subsistence and ecology and to portray the environment of the Northern Negev during the Lower Paleolithic, in which hominins and animals were interacting. Specifically we investigate the possibility that the bone assemblages are anthropogenic, i.e., represent hominin food debris, thus allowing inferences concerning hominin subsistence be drawn from them. In addition, the location of these sites on the present-day desert fringe suggests that Lower Paleolithic hominins regularly utilized the semi-arid zone. However, this transitional region may be prone to environmental changes and it may be possible that hominin occupation took place in a Mediterranean environmental setting similar to the more northern sites. We explore this issue using archaeofaunal remains from the Northern Negev as a paleoenvironmental proxy for the ecology of early hominin foragers.

The sites and their settings

The Lower Paleolithic sites of Bizat Ruhama and Nahal Hesi are located on the Negev coastal plain, 25 km east of the present Mediterranean shoreline (Fig. 1). This region is a transitional zone between the Mediterranean and the semiarid climatic belts in the Irano-Turanian phytogeographical region, with an average yearly rainfall of 300–400 mm, and is located just 30 km north of the Sahara-Arabian phytogeographical region characterized by an average yearly rainfall of 300–400 mm. The geographic position of the area in the desert fringe supposedly makes the region highly sensitive to environmental changes deriving from fluctuations of climatic belts during the Quaternary (Horowitz, 1979; Magaritz, 1986; Magaritz and Goodfriend, 1987; Vaks et al., 2006, 2007). The part of the coastal plain where sites are located is built of low undulating Quaternary sand and loess hills (160–190 m above sea level) that descend gently to the east and the north toward Nahal Shiqma (Shiqma Stream), the largest stream in the region. The loess hills are occasionally eroded, thus creating typical badland landscape.

During the Quaternary, the environment of the Negev coastal plain was influenced by sea level fluctuations, the vicinity of the desert, and pedogenetic processes. The base of the Quaternary sequence in the area is the Pliocene/Early Pleistocene Pleshet and Ahuzam formations (Bar-Yosef, 1964; Gvirtzman and Buchbinder, 1969; Sneh and Buchbinder, 1984; Zilberman, 1984, 1986; Sneh et al., 1998). The major parent material of the rocks and soils that build the Quaternary sedimentological cover is quartzitic sand swept from the Nile Delta along the eastern Mediterranean shoreline during numerous sea transgressions. Sand-dunes were often transformed either into sandstone (kurkar), or red sandy loam (hamra). The sandstone outcrops only in few locations west of Bizat Ruhama (Issar, 1961; Bar-Yosef, 1964; Nir and Bar-Yosef, 1976; Horowitz, 1979; Nir, 1989). It seems that Quaternary sand invasion did not make its way into the Nahal Hesi area, where the Pleschet Formation is directly overlain by loess that has been accumulating in the Negev from the Middle Pleistocene to recent times. The thickness of the loess deposits in the Negev reaches 12–15 m (Yaalon and Dan, 1974; Bruins and Yaalon, 1979), but it is lower in the vicinity of the sites, because the area is close to the northern boundary of loess deposition in Israel. The loess constitutes the upper stratigraphic unit in both sites, but in the vicinity of Bizat Ruhama it was largely removed by erosion that created the badlands and exposed the underlying hamra, thereby enabling the discovery of the site.

Some stratigraphic and paleoenvironmental data from the Negev coastal plain were obtained from the Bizat Ruhama section, the Ruhama section, located on the other side of the Bizat Ruhama badland, some 700 m from the site, and the Tel-Sheruhen section, located in the Nahal Besor region some 30 km south of the study area. Lengthy erosional phases are evidenced during the Early Pleistocene in the Tel Sheruhen section (Menashe, 2003) and during the Middle Pleistocene in the Ruhama section (Ron and Gvirtzman, 2001; Dassa, 2002). The erosional gaps were linked to humid environmental conditions (Menashe, 2003). More humid conditions relative to the present were also suggested by Dassa (2002) during the formation of the Early Pleistocene hamra in the Ruhama section and by Rosen (1986) during the formation of the Middle/early Upper Pleistocene terraces of Nahal Shiqma. However, the climatic fluctuations documented in the Middle Pleistocene of Tel Sheruhen section are all within the range of semiarid environment that characterize the region until present (Menashe, 2003).

Bizat Ruhama

Bizat Ruhama is a single-horizon open-air site located in a badland landscape. The archaeological layer (10–15 cm thick) was discovered at the bottom of two erosional channels on the edge of the badland field between Nahal Shiqma and Kibbutz Ruhama. Erosion exposed a ca. 20 m thick depositional sequence. The archaeofaunal remains from the site are well-preserved in a clayey sand layer 20–50 cm thick that descends gently to the east and the north toward Nahal Shiqma (Shiqma Stream), the largest stream in the region. The loess hills are occasionally eroded, thus creating typical badland landscape.

The site was excavated in 1996 by Ronen and Burdukiewicz (Ronen et al., 1998) and in 2004–2005 by Zaidner (submitted). Paleomagnetic studies showed reversed polarity for most of the sequence except for the upper 0.5 m, where inconclusive measurements were read. The dating results place the archaeofaunal remains from Bizat Ruhama in the middle of the Matuyama reverse polarity chron (1.96–0.78 Ma). Stratum 4, overlying the Pleistocene Stratum 3, and the lower part of Stratum 2 were also dated during the Matuyama chron. No sediments corresponding to the Brunhes normal polarity chron were found in the studied section (Laukhin et al., 2001; Fig. 2).

The site exhibits numerous remains of animal bone and teeth fragments from an excavated area of 11 m² at the north of the site. Equid teeth and a possible bovid metapodial fragment were noted, as well as a “worn tooth fragment of a hippo(?)” (Dayan Ronen et al., 1998: 169). This fragment was not marked by the analyst;
in the course of the present research we examined the only specimen that matches this description (ca. 1 cm long) and found that at this stage it was impossible to tell if it belonged to a hippo canine, a boar tusk, or to another species. The faunal remains reported in the present study originate from BR AT5, an area excavated in 2004–2005 by Zaidner, located approximately 50 m south of the first excavation. A distinct horizon of flint artifacts and animal bones was discovered in this ca. 25 m² exposure (Zaidner, submitted). This locality yielded significantly more faunal remains than the old excavation area or other soundings throughout the site, and therefore the BR AT5 faunal assemblage was selected for this study.

During fieldwork at Bizat Ruhama excavators plotted every observed bone fragment using three-dimensional coordinates, and then bagging fragments separately onsite. All of the remaining excavated sediment was collected, and half of it was wet-sieved through 1 mm mesh. All faunal remains that were not plotted in the field were hand-picked from the 1 mm sieves. The procedures concerning both piece-plotted and sieve-recovered faunal remains are detailed below.

Nahal Hesi

Nahal Hesi is an open-air site located on the bank of Nahal Shiqma (Fig. 1). The site was excavated in 1971 and 1973 by the late David Gilead, but never published and the documentation of the excavation was lost. The stratigraphic section was briefly studied by one of us (YZ). The archaeological finds occur in a clayey and sandy deposit covered by loess (Fig. 2). The underlying unit includes sand, small flat pebbles and calcareous sandstone. According to the field observations this unit correlates with the Pleshet Formation. If this is the case, a long period of erosion or non-sedimentation occurred between the deposition of the Pleshet Formation and accumulation of loess (Zaidner, in preparation).

Reports of fauna from Nahal Hesi have never been published except for several equid teeth described by Davis (1980). The faunal remains reported in this study originate from the 1971–1973 excavation and are associated with Lower Paleolithic industry, under study by Zaidner (in preparation). This industry is composed of handaxes, choppers, cores, flakes and retouched flake tools, showing well-defined Acheulian characteristics. Some of the handaxes, and especially the flake tools, demonstrate a high degree of refinement characteristic of the Late Acheulian, thereby assigning the site to the Middle Pleistocene.

The collection method of bones (and lithic artifacts) at Nahal Hesi, excavated in the early 1970’s, is not known, as documentation was lost. It seems that bones were collected quite meticulously during excavation and were completely retained (see below). The faunal (and lithic) assemblage from the site was located by Y.Z. in the Zinman Institute of Archaeology, University of Haifa, and the equid teeth published by Davis, which were curated in the Department of Evolution, Systematics and Ecology in the Hebrew University, Jerusalem, were also incorporated in this study.

Methods

The research protocol applied here included the identification of all skeletal elements and systematic documentation of bone-surface modifications and mode of bone fragmentation. We used a multivariate taphonomic approach (Behrensmeyer, 1991; Bar-Oz and Munro, 2004); multiple primary taphonomic data and
Taphonomic analyses are integrated to discern the taphonomic history of the assemblage, with special reference to human subsistence behavior.

In order to clean bone cortical surfaces, faunal remains were gently washed with fresh water and left to dry slowly. No further cleaning was needed for most specimens. All bones were saved and the identifiable specimens were selected for analysis. Identifiable elements (henceforth NISP; Number of Identified Specimens) included long bone articular ends, long bone shaft fragments with diagnostic zones (Stiner, 2004) or indicative characteristics such as thickness and morphology of the cross section and medullary cavity (Barba and Dominguez-Rodrigo, 2005), teeth, cranial fragments, ribs, vertebrae, and all other recognizable bone fragments. We also recorded unidentifiable long-bone shaft fragments that could be assigned to size-class and measured ≥4 cm in length (henceforth NUSP; Number of Unidentified Specimens). Their approximate location within the limb (i.e., ‘upper limb’ for humeral/femoral fragments, ‘intermediate limb’ for radial/tibial fragments and ‘lower limb’ for metapodial fragments) was noted when possible. Both identified fragments (NISP) and unidentifiable but recorded limb shafts (NUSP) form the total assemblage used for the taphonomic analysis (NSP; Number of Specimens).

Taxonomic identifications of complete elements (almost all teeth) were undertaken by VE (equids of the two assemblages) and BM-N (Bizat Ruhama bovids). Other identifications were based on the comparative collection of the Laboratory of Archaeozoology, Zinman Institute of Archaeology, University of Haifa. Because of the high fragmentation, the majority of the identified specimens were assigned to one of three ungulate body-size classes: small, medium and large. These size-classes may be compared to bovid size 1, size 2–3 and size 4–5, respectively, in the terminology of Africanist zooarchaeology (Brain, 1981). At both sites the small-size ungulate class comprised gazelles, the medium-size ungulate class includes equids and medium-size bovids, and the large-size ungulate class comprised entirely of large bovine remains (Table 1).

All identified specimens (henceforth NISP; defined as fragments whose precise location in the skeletal element, or portion thereof, can be determined and quantified, and can be assigned to species or size class) were recorded according to skeletal element (e.g., proximal shaft of a humerus) and coded according to Lam et al. (1999, Fig. 1) scan site codes (e.g., a proximal shaft of a humerus was coded as HU2). In addition, the location of each element (e.g., dorsal-lateral) and its completeness (i.e., percentage of that portion of element represented) was documented (following Klein and Cruz-Uribe, 1984). In recording limb shaft fragments we used both “diagnostic zones” (following Stiner, 2004) and other morphological characteristics of the shaft fragments (e.g., Barba and Dominguez-Rodrigo, 2005). The former refer, for example, to nutrient foramina, tuberosities and grooves, and portions thereof, and the latter refer to indicative characteristics such as cortical thickness and morphology of the cross section and medullary cavity. The completeness of these morphological traits was quantified by assigning percentage of completeness. This enabled us to compute the Minimum Number of Elements (MNE; Lyman, 1994) and Minimum Animal Units (MAU; Binford, 1981) of every fraction of an element and each skeletal element. This procedure was designed to achieve a maximum accuracy of the MNE count, in light of recent critiques of identification procedures that are biased.

Table 1

| Ungulate body size classes in Bizat Ruhama (Early Pleistocene) and Nahal Hesi (Middle Pleistocene) assemblages |
|---|---|---|
| **Ungulate body size class** | **Range of weight (kg)** | **Bizat Ruhama** | **Nahal Hesi** |
| Small ungulate | 15–25 | Gazella sp. | Gazella sp. |
| Medium ungulate | 50–300 | Equus cf. tabeti, Antelopini gen. et sp. indet. | Equus cf. melikensis |
| Large ungulate | 800–1000 | Bovini gen. et sp. indet. | Bos primigenius |

Weight ranges for bovids are from Mendelsohn and Yom-Tov (1999) and from Nowak (1999). Weight ranges for equids were calculated by regression techniques on an M1 tooth at Bizat Ruhama, and by comparison to contemporaneous faunas (see Eisenmann and Sondaar, 1998).
against shaft fragments (e.g., Marean and Kim, 1998; Pickering et al., 2003; Marean et al., 2004).

Fragments whose precise location in the skeletal element could not be determined and quantified were not included in the NISP. Thus, all identified specimens contributed to the Minimum Number of Elements (MNE) counts. The validity and necessity of using MNE-derived counts is currently under debate (e.g., Grayson and Frey, 2004; Lyman, 2008). However, we used MNE-derived measures such as Minimum Animal Unit (MAU; Binford, 1981) for most analyses of skeletal-element representation in this work, because it compensates better for differential fragmentation of elements and species (e.g., Yeshurun et al., 2007a) and because the characteristics of assemblages hint at the possibility that many bone fragments were, in fact, part of the same element or individual (see below, especially for the Bizat Ruhama assemblage). This makes the use of MNE-derived counts justified and even required.

All recorded specimens were systematically examined for bone surface modifications using a stereoscopic microscope with a high intensity oblique light source, at 8–56 magnification, following the procedure described in Blumenschine et al. (1996). We searched for cut-marks (Binford, 1981) and hammerstone percussion marks, including conchoidal notches (Bunn, 1981; White, 1992; Capaldo and Blumenschine, 1994; Pickering and Egeland, 2006) and percussion pits and striations (Blumenschine and Selvaggio, 1988; Blumenschine et al., 1996; Pickering and Egeland, 2006). We also looked for carnivore punctures, scoring and digestion marks (Binford, 1981; Stiner, 1994), as well as rodent gnaw marks (Brain 1981; Fisher, 1995), and biochemical (root) marks (Dominguez-Rodrigo and Barba, 2006, 2007). We sought evidence of trampling striations (Behrensmeyer et al., 1986; Fiorillo, 1989; Oliver 1989) and abrasion of bone edges (Shipman, 1981; Shipman and Rose, 1988), and we noted weathering (Behrensmeyer, 1978). As a result of manganese staining in the Bizat Ruhama assemblage and bleaching of bones at Nahal Hesi we could not reliably record burning using visual criteria.

We recorded the mode of bone fragmentation either for each shaft fragment that retained a portion of epiphysis or for the shaft near an epiphysis to determine the stage at which the bones were broken (i.e., fresh-green vs. old-dry). The morphology of the fracture angle and fracture outline was recorded following Villa and Blumenschine (1994; Pickering and Egeland, 2006) and percussion pits and striations (Blumenschine and Selvaggio, 1988; Blumenschine et al., 1996; Pickering and Egeland, 2006). We also looked for carnivore punctures, scoring and digestion marks (Binford, 1981; Stiner, 1994), as well as rodent gnaw marks (Brain 1981; Fisher, 1995), and biochemical (root) marks (Dominguez-Rodrigo and Barba, 2006, 2007). We sought evidence of trampling striations (Behrensmeyer et al., 1986; Fiorillo, 1989; Oliver 1989) and abrasion of bone edges (Shipman, 1981; Shipman and Rose, 1988), and we noted weathering (Behrensmeyer, 1978). As a result of manganese staining in the Bizat Ruhama assemblage and bleaching of bones at Nahal Hesi we could not reliably record burning using visual criteria.

We recorded the mode of bone fragmentation either for each shaft fragment that retained a portion of epiphysis or for the shaft near an epiphysis to determine the stage at which the bones were broken (i.e., fresh-green vs. old-dry). The morphology of the fracture angle and fracture outline was recorded following Villa and Mahieu (1991). We also recorded the percentage of shaft circumference (Bunn, 1983) to describe limb breakage and to demonstrate the quality of retrieval of the faunal remains (Marean et al., 2004).

Results

The faunal assemblage of Bizat Ruhama

Zooarchaeology and taphonomy The retrieved bone assemblage of the Early Pleistocene site of Bizat Ruhama (NSP = 141) is heavily fragmented. Complete bone elements are nearly absent and the assemblage is essentially composed of isolated teeth and some limb bone shaft fragments (SOM, Table 1). These were found in direct association with flint artifacts, incorporated within a 10–15 cm thick archaeological layer, sometimes totaling dozens of faunal specimens per square meter (Zaidner, submitted). No clear anatomical articulations were noted during fieldwork, but the distribution of several fragments hinted at the possibility of some articulated elements disintegrating in situ (i.e., teeth seemingly from the same jaw that were found isolated, but in the proximity of each other). Three conjoints, each consisting of two bone fragments with ancient fractures found within ca. one meter of each other, were found during analysis, indicating the value of a systematic refitting program in the future to determine the integrity of the site and its spatial patterns. The limited vertical distribution, the direct association with lithics, the conjoints, and the possibility of several articulations may signal that the faunal assemblage of Bizat Ruhama remained largely in situ. Naturally, more data on the geology of the site and the taphonomy of the finds are needed to support this conclusion.

Bones identified to size-class rather than species make up about half of the NISP count and include almost all of the postcranial elements owing to the high level of fragmentation (Table 2). Taxonomically, Equus cf. tabeti dominate the assemblage, followed by a medium-sized spiral-horned antelope (Antelopini gen. et sp. indet., probably Pontoceros ambiguus or Spirocerus sp.), some bovine materials (probably Bison sp.) and gazelle remains (Gazella sp.) (Table 3; see data on taxonomic identification below). No remains of small game were found, despite the careful recovery procedures employed at the site. These fragments identified to species were combined with identified fragments that were assigned to size-class only and, when possible, with unidentified but recorded shaft fragments to enable the taphonomic analysis (Tables 1 and 2).

Black manganese coats the vast majority of the bones and teeth, probably indicating postburial water activity in this location, but otherwise the bones display fair preservation. The incidence of bleaching, weathering, cortical exfoliation and abrasion of bone edges is low (Table 4), indicating relatively quick burial of faunal remains in a favorable sedimentological environment. In particular, the weathering is surprisingly low for an open-air site, albeit still high compared to Pleistocene cave-sites (e.g., Bar-Oz and Dayan, 2003). The scarcity of rounded edges, cracking and exfoliation provides additional evidence of the minor role of water or other geological agents in the deposition and destruction of the assemblage. Root (biochemical) marks and trampling striations appear on about one-third of the specimens (Table 4). The latter may be induced either by sediment compaction or by hominin and animal

<table>
<thead>
<tr>
<th>Species composition at Bizat Ruhama and Nahal Hesi</th>
<th>NISP</th>
<th>NISP teeth</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bizat Ruhama</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equus cf. tabeti</td>
<td>27</td>
<td>27</td>
<td>61%</td>
</tr>
<tr>
<td>Gazella sp.</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Antelopini gen. et sp. indet. (cf. Pontoceros antiquus or Spirocerus sp.)</td>
<td>11</td>
<td>10</td>
<td>23%</td>
</tr>
<tr>
<td>Bovini gen. et sp. indet. (cf. Bison sp.)</td>
<td>6</td>
<td>6</td>
<td>13%</td>
</tr>
<tr>
<td>Total ID to species</td>
<td>47</td>
<td>44</td>
<td>100%</td>
</tr>
<tr>
<td>Nahal Hesi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equus cf. melkiensis</td>
<td>30</td>
<td>28</td>
<td>71%</td>
</tr>
<tr>
<td>Bos primigenius</td>
<td>11</td>
<td>9</td>
<td>26%</td>
</tr>
<tr>
<td>Gazella sp.</td>
<td>1</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>Total ID to species</td>
<td>42</td>
<td>32</td>
<td>100%</td>
</tr>
</tbody>
</table>
trampling. Both agents are expected as the faunal remains were deposited in the context of hominin and carnivore activities (see below), which could trample the bones, and within fine, abrasive sediment.

Bone surfaces bear some evidence for hominin modifications (Table 4, Fig. 3). One definite cutmark was found on a rib shaft of a medium-sized ungulate. Percussion marks, including pits, microstriations, and conchoidal notches, were found on five specimens, all from medium-sized ungulates (11% of relevant NSP). This figure rises to 25% if considered as a proportion of MNE, meaning that at least one-quarter of limb bones were cracked open for marrow. Almost half of limb bone fragments from all size classes include ‘green’ (fresh) fractures, and nearly all shafts retain less than half of their original circumference, thereby strengthening the notion that hominins routinely exploited bone marrow at Bizat Ruhama.

A total of four bones with probable carnivore gnawing marks were recorded, including a tooth score and crenulated edges, all from middle-sized ungulates (Table 4; Fig. 3). One crenulation occurred on the proximal shaft of a tibia (the anterior crest) and the others on unidentified portions of shaft fragments. Two of the gnawed bones also display ‘green’ fracture patterns lacking percussion marks, suggesting that some pre-burial limb-bone breakage was the result of carnivore ravaging rather than hominin fracturing for marrow. Unfortunately, the faunal sample of Bizat Ruhama is too small for a detailed quantitative study of the hominin and carnivore marks in order to evaluate the timing of access of each agent to the ungulate carcasses (e.g., Blumenschine, 1995; Dominguez-Rodrigo and Pickering, 2003).

The dominant skeletal parts within each size class at Bizat Ruhama are teeth (all isolated) followed by limb-bone shaft fragments. In the medium-sized ungulate group, which comprises the largest sample, heads are well-represented, limbs are less-represented and axial parts are almost absent (Fig. 4; Supplementary Content, Table 1). The survival of bone parts correlates significantly with their mineral density (Table 4; the low value probably stems from the exclusion of teeth, which have no published BMD values). Overall, the densest elements in the body, which best resist

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Bone-surface modification data, bone fracture data and values of key taphonomic variables for the three size-classes at Bizat Ruhama and Nahal Hesi.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bizat Ruhama</td>
</tr>
<tr>
<td>NSP</td>
<td>Small ungulate</td>
</tr>
<tr>
<td>NSP excluding teeth (limb shaft NSP)</td>
<td>8</td>
</tr>
<tr>
<td>Manganese coating</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>88%</td>
</tr>
<tr>
<td>Bleaching</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>13%</td>
</tr>
<tr>
<td>Green fracture</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>100%</td>
</tr>
<tr>
<td>Shaft circumference</td>
<td><50%</td>
</tr>
<tr>
<td>%</td>
<td>13%</td>
</tr>
<tr>
<td>Weathering (stage 3–5)</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
</tr>
<tr>
<td>Cutmarks</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
</tr>
<tr>
<td>Percussion marks</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
</tr>
<tr>
<td>Carnivore gnawing</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
</tr>
<tr>
<td>Rodent gnawing</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>0%</td>
</tr>
<tr>
<td>Root-marks</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>14%</td>
</tr>
<tr>
<td>Trampling striations</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>14%</td>
</tr>
<tr>
<td>Exfoliation</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>29%</td>
</tr>
<tr>
<td>Abrasion</td>
<td>n</td>
</tr>
<tr>
<td>%</td>
<td>29%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abundant skeletal elements</th>
<th>Teeth and limb shafts</th>
<th>Teeth and limb shafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial bone to teeth MNE</td>
<td>0/1</td>
<td>0/0</td>
</tr>
<tr>
<td>Isolated teeth/all teeth NSP</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>Correlation BMD*MAU</td>
<td>r = 0.26</td>
<td>r = 0.26</td>
</tr>
<tr>
<td>p < 0.02</td>
<td>p < 0.02</td>
<td></td>
</tr>
<tr>
<td>Correlation GUI*MAU</td>
<td>r = 0.54</td>
<td>r = 0.54</td>
</tr>
<tr>
<td>p < 0.05</td>
<td>p < 0.05</td>
<td></td>
</tr>
<tr>
<td>Correlation Marrow*MAU</td>
<td>r = 0.52</td>
<td>r = 0.52</td>
</tr>
<tr>
<td>p = 0.23</td>
<td>p = 0.23</td>
<td></td>
</tr>
</tbody>
</table>

Note: %MNE of green fractures, cutmarks and percussion marks was computed as MNE of bones with these attributes/total MNE of relevant bones in the assemblage. NUSP were not included in the %MNE count.

All correlations are Spearman’s r. Bone Mineral Density (BMD) values are from Lam et al. (1999). General Utility Index (GUI) and Marrow Weight were taken from Outram and Rowley-Conwy (1998) for horse, and porous elements were omitted. These analyses included only the NSP.
a plethora of pre- and post-depositional destructive processes, are the best represented (teeth). The next densest parts, limb bone shafts, are the next best represented, and almost no elements with low density values have survived. While limb-bone ends and skull pieces are nearly absent, denser parts of these elements do exist in the assemblage (long bone shafts and the skull teeth and petrosum) indicating that more porous parts of the skeleton were indeed brought to the site but were differentially preserved and subsequently were lost as a result of destruction processes. For instance, dense limb-bone shafts outnumber porous limb-bone ends for all limb bones in the assemblage, sometimes in the proportion of 3:1, in spite of the fact that they were probably brought to the site as a complete bone before being fractured by hominins or carnivores.

In light of this pronounced density-mediated attrition, we examined the nutritional utility of skeletal elements in relation to their survival in the assemblage using only the high-density elements, which are expected to better represent hominin behavior (following Marean and Cleghorn, 2003; Cleghorn and Marean, 2004). Weak and nonsignificant positive correlations were found between the skeletal element survival (MAU) of the medium ungulate size class and either the General Utility Index (GUI), the mean meat weight or the mean marrow weight for horse (Table 4; data from Outram and Rowley-Conwy, 1998). However, these quantitative analyses have to be taken with caution because of the small sample of relevant skeletal elements in the assemblage. To conclude, it can be suggested that heads and (less frequently) limb units underwent some carnivore ravaging and marrow-oriented hominin butchery at Bizat Ruhama, and that carcass parts subsequently suffered from density-mediated post-depositional decay, which was largely taking place in situ.

Family Equidae The sample comprises only cheek teeth (eight upper and 12 lower) some of which are fragmentary (Supplementary Online Material, Table 2). On the upper teeth, protocones are rather small, *plis caballin* are present on the premolars and the enamel of the fossettes is moderately plicated. In this regard, the teeth of Bizat Ruhama resemble some specimens from ‘Ubeidiya and Gesher Benot Ya’aqov (Eisenmann, 1986) (Fig. 5). Occlusal size and protocone length fall inside the scattergram of upper cheek teeth of *E. tabeti* from Aïn Hanech, Algeria, as do the teeth from Gesher Benot Ya’aqov (Fig. 6a). Occlusal size and length of the protocone are slightly smaller than at ‘Ubeidiya (Fig. 6b). The lower cheek teeth have rounded double knots, with deep lingual grooves. Unlike extant asses and hemiones, the vestibular grooves are deep on the molars. The pattern is ‘stenonid’ with rounded double knots (unlike horses), deep lingual grooves (unlike hemiones), deep vestibular grooves on molars (unlike hemiones and asses), and again resembles the pattern observed at ‘Ubeidiya and Gesher Benot Ya’aqov (Fig. 5). Thus, it seems reasonable to refer the teeth from Bizat Ruhama to an equid close to *E. tabeti*. There are no complete equid bones from the site, but two first phalanges of the similar species from Gesher Benot Ya’aqov have the proportions of African asses (Eisenmann, unpublished data).
In sum, teeth from Bizat Ruhama resemble the equid teeth from Gesher Benot Ya’aqov and the teeth of *E. tabeti* from Ain Hanéch and (less so) *E. cf. tabeti* from ‘Ubeidiya. They differ from extant wild asses by smaller protocones and deep vestibular grooves. Comparison with material from the similar species at Gesher Benot Ya’aqov shows the body proportions to resemble those of extant wild asses; therefore they suggest a dry environment as extant gracile equids typically inhabit such environments.

Family Bovidae The sample comprises fourteen cheek teeth and one nearly complete distal metacarpus. The systematic study of these fossils is hindered by the small collection with broken and not always well-preserved fossils and the lack of complete horn-cores. Within this sub-assemblage three species of the family Bovidae are present: Bovini gen. et sp. indet. (cf. *Bison* sp.), Antelopini gen. et sp. indet. (cf. *Pontoceros ambiguus* or *Spirocerus* sp.) and *Gazella* sp. (Gazella cf. *G. gazella*).

Bovines are represented by two molars (Table 5; Fig. 7). The size of these dental specimens and the general anatomy indicate that they probably correspond to the genus *Bison*, which is less hypsodont and smaller than *Pelorovis* (synonym of *Bos* after Martínez-Navarro et al., 2007). *Bison* is present at ‘Ubeidiya (Haas, 1966; Geraads, 1986; Martínez-Navarro et al., in preparation), and probably at Gesher Benot Ya’aqov (Martínez-Navarro and Rabinovich, 2011).

A total of nine fossil teeth and a distal end of a metacarpus correspond to Antelopini gen. et sp. indet. (cf. *Pontoceros ambiguus* or *Spirocerus* sp.) (Table 5; Fig. 7). This species is characterized by a brachydont and prismatic dentition with relatively thin enamel. Probably all the dental pieces ascribed to this species correspond to the same individual with the exception of BR 104, that has to be from another older individual. The distal left metacarpus BR 34 (Fig. 7) corresponds to an antelope of small middle size, in the variability of APL 99, APL 188 and APL 100, from Apollonia-1, all of them ascribed to *Pontoceros ambiguus* (Kostopoulos, 1997), and DM 2625 and DM 60 from Dmanisi (Buhksianidze, 2005) and smaller than APL 548, also corresponding to a middle size antelope from Apollonia-1. As in Dmanisi (Buhksianidze, 2005) in Apollonia there are probably two species of antelopes, *Pontoceros* and *Spirocerus*. The metacarpus from Bizat Ruhama likely corresponds to one of them. A similar Antelopini species, if not the same, is also present at the Early Pleistocene site of ‘Ubeidiya (according to a revision by Martínez-Navarro et al., in preparation). It is not present in the later site of Gesher Benot Ya’aqov (Martínez-Navarro and Rabinovich, 2011).
The presence of a well-developed “Caprini fold” in the lower molar specimens from Bizat Ruhama indicates that these antelopes cannot be classified in the African spiral horn-cores tribe Tragelaphini and that they are part of the Asian antelopes. The low-crowned teeth of the Bizat Ruhama antelopes correspond to a browsing diet.

A single upper M3 represents *Gazella* sp. (*Table 5; Fig. 7*). This tooth falls within the range of variability of *Gazella gazella* but more information is needed for a clear ascription. Similar forms are also present at ‘Ubeidiya, Gesher Benot Ya’aqov and Ain Hanech. One *Gazella* sp. (identified specimens as well as unidentified shafts that are >4 cm long) were selected by us from the original boxes in which they were stored, unwashed, for more than three decades. Only several equid teeth were removed by the excavator and curated in the Hebrew University collection. These specimens were also incorporated in our study. Following our sorting, numerous bone splinters and smaller shafts remained in the boxes, again attesting to complete collection and retention during and after the excavation. All of this evidence seems to indicate that the Nahal Hesi assemblage derives from an in situ locality and represents the correct faunal and anatomical composition.

The dominant species at Nahal Hesi (*Tables 2 and 3*) is an equid (*Equus cf. melkiensis*, see below) probably related to the asinine group, followed by aurochs (*Bos primigenius*). A small bovid, most probably gazelle (*Gazella* sp.) is present, but its specific identification is based upon a fragmented molar tooth. Accordingly, the bones identified to size-class mostly belong to the medium ungulate class, followed by the large and the small ungulate classes. The presence of a medium-size bovid alongside the equids in the ‘medium ungulate’ class is suggested by a fragmented bovid distal metapodial; thus we cannot rule out that some of the medium-size ungulate bones belong to an undetermined bovid species. However, judging from the teeth, the vast majority of animals in this size-class are equids.

Most bones at Nahal Hesi are bleached, and thus white and chalky in appearance. None are coated with manganese, as at Bizat Ruhama (*Table 4*). Weathering damage is high compared to Bizat Ruhama but still moderate for an open-air site, with 35% of NSP displaying weathering stage 3, 8% displaying stage 4 and none at stage 5 (according to Behrensmeyer’s [1978] six-stage scheme). None of the bones are exfoliated and only two display rounded edges as a result of abrasion. The incidence of root (biochemical) marks is high at 53%, and ca. one-third of the specimens bear trampling striations. Limb bone fracture patterns indicate that most long bones were probably fractured while fresh, for nutritional purposes, but more than half of them underwent additional breakage episodes and currently display dry fractures (according to %MNE; *Table 4*). However, only one specimen, a medium-size tibial shaft fragment, displays a probable percussion mark (*Fig. 8*). This is unexpected given the ample evidence for ‘green’ fracturing of the assemblages and the incomplete circumference of all shafts.

Carnivore ravaging may also crack long bones in a similar way (*Pickering et al., 2005*) but only one (questionable) gnaw mark was observed, on an upper limb shaft fragment of a large ungulate (*Table 4*). Thus, the impact of carnivore ravaging on the assemblage seems negligible; the rarity of percussion marks may be attributed to the weathering and bleaching of bone surfaces, which might...

Fig. 6. Comparison of the measurements of Bizat Ruhama equid upper cheek teeth with ‘Ubeidiya, Gesher Benot Ya’aqov and Ain Hanech.
vertebrae are entirely absent (Supplementary Online Material 3). Some epiphyseal fragments. Some epiphyseal fragments are present, but ribs and almost entirely composed of isolated teeth and long-bone shaft butchery, not vice-versa. demonstrate that any carnivore involvement followed hominin to fleshed carcasses of medium and large ungulates, because they ascertained that the cutmarks attest to primary access of hominins beyond the scope of the present study; nevertheless it can be Binford, 1981). A detailed description of butchery at Nahal Hesi is percentages of limb joints) represent carcass dismemberment (following Binford, 1981). A detailed description of butchery at Nahal Hesi is beyond the scope of the present study; nevertheless it can be ascertained that the cutmarks attest to primary access of hominins to fleshed carcasses of medium and large ungulates, because they represent dismemberment and filleting activities. They also demonstrate that any carnivore involvement followed hominin butchery, not vice-versa.

As in the Bizat Ruhama assemblage, the Nahal Hesi collection is almost entirely composed of isolated teeth and long-bone shaft fragments. Some epihyseal fragments are present, but ribs and vertebrae are entirely absent (Supplementary Online Material 3). Accordingly, the identified sample of the medium ungulate size class exhibits marked dominance of heads and an underrepresentation of limbs and axial elements (Fig. 4). The survival of skeletal elements correlates significantly with bone mineral density, even more so when considering the teeth are omitted from that analysis. No correlations between skeletal element survival (MAU) with either utility or marrow content were found (Table 4).

Family Equidae Our identification of the Nahal Hesi equids expands on the previous work by Davis (1980) using a larger sample and the body of data that accumulated since his study. The sample comprises five upper and 18 lower cheek teeth (Fig. 9; Supplementary Online Material, Table 4). One upper tooth (NH 39V, probably a P3), seems caballine by its largestylids, a well developed pli caballin, and an elongated protocone; the wide and grooved mesostyle of an upper P2 (NH 64) is also a caballine character (Fig. 9). All of these characters, however, may occasionally occur in asses. Two lower cheek teeth have flat hypocones, a usual characteristic in caballines but the double knot of the premolar is not typically caballine (Fig. 9). Moreover, both teeth are much worn. All other cheek teeth could belong to an ass or a hemione. The pattern of the upper M3 may be found in both groups; on the lower cheek teeth, the vestibular groove is shallow even on the molars (Fig. 9). By its elongated metastyle, NH 109 closely resembles MOC 16 from the Aterian of Ain Tif Mellil, Morocco, referred to as Equus melkiensis (Eisenmann, 2006), a kind of ass, possibly present during the Middle Pleistocene at Tighenif (Geraads et al., 1986) and Tihodaïne (Algeria) (Thomas, 1977). Another specimen (NH 34V) resembles a specimen from Tabun C (British Museum, no number). In sum, the equid teeth from Nahal Hesi probably belong to a kind of primitive ass like E. melkiensis. The presence of a caballine is possible but far from certain. Given that recent asses inhabit dry environments, the asinine characteristics point to a dry environment at Nahal Hesi.

The Northern Negev sites presented here are dominated by Lower Pleistocene and Middle Pleistocene equids. The taxonomy and evolution of equids at the transition between the Lower and Middle Pleistocene are yet poorly understood. Schematically, there existed during the Lower Pleistocene slender middle-sized equids like E. tabeti of Ain Hanech (Algeria), and the probably related equids of Ubeidiye (Eisenmann, 1986) and Latamnén (Guérin et al., 1993). To this group we refer the equid from Bizat Ruhama. Lack of data, in particular of well preserved skulls, makes impossible to refer them to Allocypres or Equus (Eisenmann and Baylac, 2000). They are certainly not related to E. mauritanicus, a Middle Pleistocene North African plains zebra, and probably not to E. hydruntinus, which belongs to the group of Hemiones (Eisenmann, 1992;
Orlando et al., 2006). Most Equus species close to the extant seem to appear at the beginning of the Middle Pleistocene (Eisenmann, 2006). One of these is the North African E. melkiensis, probably related to extant Asses, to which we tentatively refer the equid of Nahal Hesi.

Discussion

Taphonomy and subsistence in the northern Negev during the Lower Paleolithic

Understanding the formation of the Bizat Ruhama bone assemblage is not straightforward. Some evidence exists for hominin modifications of the bones, in the form of fresh-fractured limb bones and percussion marks, indicating marrow extraction, and one cutmark indicating butchery. Some evidence also exists for carnivore involvement, in the form of several gnawed and tooth-scored bones. The clear association of the bones with lithic arti-facts in what seems to be an in situ living surface (indicated by three bone conjoins [see also Zaidner, in preparation]), the absence of large carnivore remains and the evidence from bone-surface modifications and bone fracture patterns all suggest that the faunal remains of Bizat Ruhama represent anthropogenic food debris. Ungulate carcass parts underwent some butchery and consumption by hominins targeting bone marrow, which potentially provides important caloric intake (e.g., Speth, 1989; Bar-Oz and Munro, 2007). The ungulate remains may have been acquired by hunting, but presently we lack sufficient information (specifically cutmarks on meat-bearing skeletal parts) to support this. A likely alternative scenario is the acquisition of ungulate carcass parts by scavenging from carnivore kills, accounting for the gnaw marks (as a result of carnivore defleshing before hominin involvement), the rarity of cutmarks, and the evidence for extraction of marrow (possibly left available for hominins following carnivore consumption). The skeletal-element profile shows preference for heads, in accordance with the scavenging scenario (e.g., Stiner, 1994) but skeletal-element data may be problematic due to the small sample of identified elements and to the particularly strong density-mediated attrition.

At the later site of Nahal Hesi, the picture becomes clearer. The abundance of butchery marks on meat-bearing limb bones of large ungulates, the meager evidence for marrow extraction, and the rarity of signs for modification by carnivores demonstrate that this assemblage is the result of hominin acquisition of large ungulate prey as primary consumers, either by hunting or by aggressive scavenging (e.g., O’Connell et al., 2002; Dominguez-Rodrigo and Pickering, 2003). However, the skeletal-element profile at the site displays an abundance of heads over limbs, usually considered to represent marginal scavenging (e.g., Binford, 1981; Stiner, 1994). This seemingly contradicts the evidence for primary access of hominins to the carcasses, as indicated by butchery mark data. As in the earlier Bizat Ruhama site, it is possible that the strong fragmentation processes the assemblage had undergone broke many shafts to a point that they could not be identified anatomically and included in the skeletal-element analyses. This is in spite of the fact that the assemblage seems to be well-collected and curated, and despite our efforts to identify as many skeletal fragments as possible. The more durable teeth were less affected by attrition and subsequently were confidently included in the identified sample, thereby better-representing the number of animals brought to the site. In light of the preservation problems, we tend to prefer the evidence from bone-surface modification to discern the mode of carcass acquisition at Nahal Hesi.

The notion that the faunas of Bizat Ruhama and Nahal Hesi are anthropogenic is important in the context of the Lower Paleolithic. At other sites in the Southern Levant and beyond archaeofaunal assemblages derive primarily from either carnivore kills or natural mortality, with restricted hominin input. Specifically, limited hominin involvement has been documented for Dmanisi and Akhalkalaki (Tappen et al., 2002a, b), Ambrona (Villa et al., 2005), Ubeidiya (Belmaker, 2006), most of the Olduvai Bed I sites (Dominguez-Rodrigo et al., 2007), and Elandsfontein (Klein et al., 2007; and see also Brain, 1981). Naturally, this limits the inferences that can be drawn from these assemblages with respect to hominin hunting and subsistence. Contrary to that, the assemblages presented here seem to have derived from anthropogenic activities representing butchery of large ungulate carcass parts, with at least the later case (Nahal Hesi) exhibiting plausible evidence for primary access to the carcass. This notion was recently echoed by studies of diverse Lower Paleolithic assemblages such as Early Pleistocene FLK Zinjanthropus and BK at Olduvai (Dominguez-Rodrigo et al., 2007, 2009), the Early-Middle Pleistocene transition at Gesher Benot Ya’aqov (Rabinovich et al., 2008), and the Middle Pleistocene sites of Schönningen (Voormolen, 2008), Xujiayao (Norton and Gao, 2008) and Qesem...
Cave (Stiner et al., 2009). The precise trophic level of the hominins in the Northern Negev is difficult to discern without more data, especially concerning the intriguing Early Pleistocene faunal evidence from Bizat Ruhama.

Hominin paleoecology and paleoenvironment of the sites

The faunal remains of Bizat Ruhama and Nahal Hesi are essentially food debris accumulated by Lower Paleolithic hominins in the Northern Negev region. Thus, these sites directly represent the ecological settings exploited through hominin foraging (e.g., Bar-Yosef, 2004). The macromammalian record may be a coarse-grained measure of environmental changes relative to others (e.g., sedimentological or isotopic studies). However, this measure is highly correlated to hominin ecology, because ungulates served as the resources regularly procured and used by hominin foragers.

The two sites display very similar taxonomic compositions, with dominance of equids and bovids. Both equid species probably attest to a relatively dry climate and an open environment, while the teeth of the spiral-horned antelope (probably Pontocerus/Spirocerus) of Bizat Ruhama suggest a browsing diet. Gazelles usually forage on open terrain (Mendelsohn and Yom-Tov, 1999). The large bovines may inhabit dry grassland, but must stay in proximity to a water source. Overall this indicates an open, relatively uniform environment with patchy water sources and trees, much like this semiarid region today.

This species composition is markedly different from Lower Paleolithic sites located just 50–70 km to the north, including Holon (Monchot and Horwitz, 2007a) and Qesem (Gopher et al., 2005). Moreover, this species composition is different from the sites of the Galilee coastal plain and the Jordan Valley, including Evron Quarry (Tchernov et al., 1994), 'Ubeidiya (Tchernov, 1986; Belmaker, 2006), and Gesher Benot Ya'aqov (Rabinovich et al., 2008) (Fig. 10). Specifically, all of these sites are rich in cervids, while equids are scarce in all sites but 'Ubeidiya, where they amount to about 15% of NISP (Belmaker, 2006). The site of Revadim Quarry, located just 30 km north of the Northern Negev sites, include three cervids species but also many 'open' species (Marder et al., 1998, 2007), raising the possibility that it occupies a niche in between the sites of Northern and Central Israel and the Northern Negev sites. Many sites in this period include proboscidean remains (e.g., 'Ubeidiya, Evron, Gesher Benot Ya'aqov, Revadim and Holon), and remains of amphibious animals such as hippos and turtles (except for Revadim), but no such remains have been confidently identified at either Bizat Ruhama or Nahal Hesi. The faunal remains collected at the Azraq C-Spring in eastern Jordan, which may belong to the Lower Paleolithic, offer a similar array of 'open' ungulate taxa, probably indicating a relatively dry grassland environment (Clutton-Brock, 1989).

The closest parallel to the Lower Paleolithic Northern Negev sites comes from the Middle Paleolithic (Late Pleistocene) of the same region – the open-air site of Far'ah II in the Nahal Besor region, which is dominated by Equus, Bos, Alcelaphus and Camelus remains (Gilead and Grigson, 1984). As is the case with the Lower Paleolithic sites, Far'ah II diverges from Middle Paleolithic sites further north which usually display an important cervid component (e.g., Bate, 1937; Davis, 1977; Rabinovich and Hovers, 2004; Rabinovich et al., 2004; Stiner, 2005; Speth and Tchernov, 2007; Yeshurun et al., 2007b). The three faunal assemblages of the Northern Negev, dating to the Early, Middle and Late Pleistocene and originating from an in situ depositions of hominin food debris, yielded equid, antelope and bovine remains, with no typical woodland species (e.g., cervids and suids). Additionally, animals that live in freshwater sources (e.g., hippo or turtle) are either absent or extremely rare at the Northern Negev.
It is remarkable that three faunal assemblages from the Lower Paleolithic and the Middle Paleolithic of the northern Negev share essentially the same faunal communities despite the wide chronological and cultural gaps that exist between them, clearly setting them apart from the sites further north. The Northern Negev today is a transitional zone between the Mediterranean climatic zone to the north and the arid Negev Desert in the south, and its climate is semiarid, receiving some 300–400 mm of rain annually. The archaeofaunal data suggest that the Pleistocene Northern Negev environment was in the range of a semiarid climatic zone as it is at present. Geological data from the immediate vicinity of the sites revealed the occurrence of more humid environmental episodes, but probably within the range of semiarid climate (Rosen, 1986; Dassa, 2002; Menashe, 2003). Little is known of Pleistocene faunas further south, in the present-day extremely arid desert. In the early Middle Paleolithic fauna of Rosh Ein Mor and in the Upper Paleolithic site Ein'Aqev, both located in the central Negev highlands, Equus, Gazella, and Capra dominate but Bos, which is less adept to arid conditions, is rare or absent (Tchernov, 1976). Thus, the relative environmental stability stemming from our results may signal a northern limit to desertification and a southern limit to the Mediterranean woodlands of the southern Levant throughout the Pleistocene. Notwithstanding climatic fluctuations, no major northward or southward movements of climatic belts are indicated by our data. Recent paleoclimatic reconstructions using the timing of growth and isotopic composition of cave speleothems form the north-eastern Negev (presently semiarid to arid region) displayed several fluctuations in the amount of rainfall of that region, most of which were still in the range of semiarid environment (Vaks et al., 2006). The clear archaeofaunal dichotomy evident between the northern sites and the Northern Negev sites all along the Lower and Middle Paleolithic periods lends support to viewing the southern Levant Pleistocene climate as one dictated by the present-day geography. Specifically, mostly mild movements of the climatic belts occurred because of the region’s extreme physiogeographic variability (Enzel et al., 2008). Thus, integrating the archaeofaunal,
The Lower Paleolithic sites of Bizat Ruhama (Early Pleistocene) and Nahal Hesi (Middle Pleistocene), located on the northern fringe of the Negev Desert, yielded small but significant faunal assemblages probably deriving from anthropogenic meat-acquisition and butchery activities. The site of Nahal Hesi presents evidence for primary access of hominins to flished carcasses of large ungulates, while the earlier site of Bizat Ruhama may represent secondary access of hominins to carcasses. The assemblages are among the only Lower Paleolithic faunas in the southern Levant that are dominated by equids and lack cervids and suids. No elephants or amphibious animals were found, too. These findings indicate an open, relatively uniform environment with patchy water sources and trees, much like this region today. Bizat Ruhama and Nahal Hesi are among the rare Lower Paleolithic sites in the Southern Levant associated with such an ecological setting, thereby widening our knowledge of the spectrum of environments exploited by hominins in the region. We suggest that the fauna from the two sites, coupled with the Late Pleistocene faunal evidence of the same region, reflect a largely stable semiarid environment on the fringe of the Negev Desert throughout much of the Pleistocene.

Acknowledgements

We thank Naama Goren-Inbar for inviting us to participate in the symposium where a draft of this paper was presented, and Rivka Rabinovich for showing us the equid teeth from Nahal Hesi and for her assistance in the course of this research. We enjoyed useful discussions (including some disagreements) with Miriam Belmaker, Naama Goren-Inbar, Daniel Kaufman, Ofer Marder, Nimrod Marom, Avraham Ronen and Mina Weinstein-Evron on aspects relating to this paper. We acknowledge the helpful comments made by the editor, the guest editor and three anonymous reviewers. Vera Damov skillfully produced most of the plates and figures. The renewed excavations at Bizat Ruhama were generously funded by the L.S.B. Leakey Foundation (to Y.Z.), B.M.-N. thanks the Spanish Ministry of Science and Innovation (Grant No. CGL2006–13808-C02-01).

Appendix. Supplementary Online Material

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.jhevol.2010.01.008.

References

Davis, S.J., 1980. Late Paleolithic and Holocene equid remains from Israel. J. Linn. Soc. 70, 289–312.

